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PREFACE

The MODCV (Modeled Ceiling and Visibility) program was developed by the United States Air Force
Environmental Technical Applications Center's Environmental Simulation Branch (USAFETAC/DNY) for Air
Weather Service's Central Support Division (AWS/DOOX) after Air Weather Service asked for a computer model
that would help meet the climatological database needs of AWS field units by making ceiling and visibility
climatology available from a microcomputer. Probability tables produced by MODCV can be used in the Field to
forecast ceiling and visibility categories.

The main purpose of this technical note is to familiarize AWS analysts and forecasters with how the MODCV
program works by describing the algorithms that generate the conditional and unconditional probability tables for
cloud ceilings and visibilities.

Original MODCV algorithms were developed by Mr. Albert R. Boehm in 1975. Capt Robert LaFebre later
expanded Boehm's work to include conditional and unconditional climatology for ceiling, visibility, and joint
ceiling-visibility.

For more information on ceiling and visibility modeling, see Chapter 3, USAFETACITN-820)04, Bavic Techniques.
in EnWronmental Simulation; Chapter 2, USAFETAC/TN-83/03, CeilinglVisibility Simulation Model; and
Chapters 1-4, AWS-TR-75-259, Transormalized Regression Probability.
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O Chapter I

INTRODUCTION TO MODCV

1.1 Description. MODCV (Modeled Ceiling and Visibility) uses probabilities derived from cumulative frequency
distributions to produce conditional and unconditional probabilities of ceiling, visibility, and joint ceiling and
visibility. MODCV calculates probabilities for a given location by using modeling coefficients specifically
determined from climatological data for that location. Eight sets of modeling coefficients that span 3-hour time
blocks are generated for each month.

1.2 Requirement and Development. Climatology requirements of the typical base weather station have, up to
now, been satisfied by Revised Uniform Standard Surface Weather Observations (RUSSWO), Wind Stratified
Conditional Climatology (WSCC) tables, and AWS Climatic Briefs. But the recent addition of the
microcomputer to most AWS stations provided for the possibility of letting forecasters complement those
printed summaries with climatology databases stored in their computers.

In 1985, therefore, USAFETAC's Operating Location A at Asheville, NC, was asked to prepare cost estimates
for transferring a climatological database package to floppy disks-a package that could be used on the Zenith
Z- 100 microcomputers with which most AWS weather stations were equipped. Unfortunately, OL-A found that
it took at least 31 diskettes per station to store its RUSSWO (4 diskettes), WSCC tables (24 diskettes), Climatic
Brief (I diskette), and Temperature-Dewpoint (TT/TD) curves (4 diskettes). The sheer size and extent of tile
disk library so created made microcomputer climatology a cumbersome and impractical undertaking, at least for
the time tbeing.

Then in April 1986, AWS/DOOX asked USAFETAC to develop a modeled climatology that would be capable
of producing unconditional and conditional probabilities for ceiling, visibility, and joint ceiling and visibility.
That request was the basis for an extended USAFETAC project, probably to span a number of years, that will
eventually develop a comprehensive modeled climatology of all sensible weather elements. The results of
ceiling and visibility modeling efforts to date are described in the following chapters.



* Chapter 2

MODCV METHODOLOGY

2.1 Unconditional Probability. Unconditional climatology data is easily tabulated at any location for which a
representative period of record is available. Unconditional probability is based on the calculation of the relative
frequency at which a certain condition occurs. For example, the unconditional probability of ceiling below
3,000 feet at 0( is found by dividing the number of OOZ observations with ceilings below 3,()O feet by the
total number of W(Z observations. This process is what we call the "tabular" approach to calculating frcqucncy
distributions; RUSSWO ceiling and visibility climatology is an example of data produced with this method.

A flexible and extremely powerful alternative to the tabular approach is to model the "cumulative distribution
function," or CDF, with a mathematical function. In other words, we use a mathematical equation to fit the
curve associated with the CDF. As a result, the cumulative probability associated with
any value of the continuous variable of interest can be derived from the equation:

P = F (x) (2.1)

where F(x) is the function that simulates the curve of the CDF. Given any threshold value of the variable x,
therefore, we can calculate the unconditional probability that x will be below that threshold value. MODCV
uses this modeled distribution technique to produce unconditional ceiling and visibility probabilities. An
expanded discussion of fitting curves to the CDFs is given in section 3.2, Model Input.

2. Conditional Probability. The basic component of USAFETAC's conditional ceiling and visibility probability
model is based on the Ornstein-Uhlenbeck (0-U) stochastic (random) process, a first-order Markov process for
which each value of a random variable y, is considered a particular value of a stationary stochastic process. The
stochastic model relates a value of y, at time t (y), to an earlier initial value of y at time zero (yo).

A frequent assumption in statistical application is that the variable being analyzed is normally distributed.
Unfortunately, many meteorological variables (including ceiling and visibility) are not normally distributed.
However, variables can be transformed into a normal distribution by expressing the raw variable in term% of it%
"equivalent normal deviate," or END. This proce.s, known as "transnormalization," is discussed by Boehm
(1976) and is summarized in Paragraph 2.3. Once the variables have been normalized, the joint density function
associated with the two variables y0 and y, becomes:

A (y°- ii? 2p(yo -g) (y, -p) +(y, -)2".'(y0' y 2) = 2go" 4( I-p 2) ex[ 2a 2 (1 p2) J (2.2)

where p is the serial correlation between successive values of y and where g and 07 represent the mean and
standard deviation of y, respectively. Since we are interested in the conditional probability of y, given the initial
value of yo, a conditional distribution of the weather variables is required. If the weather process can be
approximated by a first-order Markov equation, then the value of y, is dependent only upon the value of y(, If
successive observations of y have a bivariae normal distribution, the conditional distribution of y, is normal
with a mean of:

EI(y, yo) I + P(yo4-) (2.3)
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and a variance of var [ (y, yo) = 2 (-p 2)] (2.4)

Equations 2.3 and 2.4 are basic to the first-order Markov equation. Specifically, a value of the variable y, can be

calculated, using:

" ,r o ,,(2.5)y, = Pt + Pyob- Pt) + (2.5)- '

If the variable of interest is distributed normally with a mean of zero and a variance of one, N(0,1), then
equation 2.5 reduces to:

Y, = PYo + V-1 (2.6)

where p is the correlation coefficient between y0 and Y, separated by a time interval t (hours), and where 11, is a

random normal number. The process is considered Markov if p = p0', where po is the hour-to-hour correlation

associated with y. If p0 is a constant, then this process is considered stationary and is known as the

"Ornstein-Uhlenbeck" (or O-U) process.

Application of the O-U process to meteorological variables is well documented in the literature (Gringortcn,
1966; Sharon, 1967; Gringorten, 1971; Whiton and Berecek, 1982). its application to variables whose time
series has a random component and which adhere to the restrictions of the Markov process is justifiable.
"Stationarity" is a characteristic that is especially favorable for application to weather variables since predictions
derived frc-n stationary processes will converge to the mean value of the variable y as the time t increases. That
is, prediction from the O-U process will converge toward unconditional ciiawnuological values as the forecast
time period increases.

From equation 2.6 we can conclude that, for a specific value of yo, the value of 1, will exceed a minimum

value fl,,. as frequently as y, exceeds a minimum value y,,,, given an initial value Y0. In terms of probability,

P (l, >-%-i) = (y >Y.i. IYo) (2.7)

Now we can replace the value of 1, as y(tIO), the normalized value corresponding to the conditional probability

of y,.. Using basic algebra, we can rewrite equation 2.6 as:

P (Y, IYO) =" >y, ityo) (2.8)

where P(ytly0) is the conditional probability of y, given the value of yo, P(y,) is the unconditional probability of y

at time t, and P(yo is the unconditional probability of y at time zero. MODCV uses equation 2.8 to calculate

conditional probabilities of ceiling and visibility. It should be clear by now that the conditional probability of y,

is a direct function of the unconditional probability of y, and yo. MODCV uses the modeled unconditional

probabilities discussed in Paragraph 2.2, "Unconditional Probability," as input to the conditional probabitty
equations.

2.3. Trar-normalization. Although the O-U process dne"' require that the variable y, be r-'mally distributed,

equation 2.6 is derived by assuming that it is distributed N(0, I). Since most weather variablet ire not normally
distributed, a transformation to a normal distribution is required. This process is referred to as
"transnormalization."

3
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Figure .I. Cumulative Distribution Function (CDF) of the Ceiling at Loring AFB,
ME, for January at 1200 LST. The CDF is extracted from the Loring AFB RUSS WO.

Figure 2.1 shows an empirical cumulative distribution function (CDF) for ceiling height. It is is simply a graph
of threshold ceiling heights (C) versus the cumulative probability (P) of a ceiling height lek .hin a given

threshold value. The dashed lines identify the cumulative probability that a ceiling height (C) is less than a
threshold value (C,) of 5,000 feet. The probability that C is less than C, = 5,000 ft is 0.351; that is, P(C <

C) - 0.351. In the context of the standard normal density function, P(C< C) corresponds to some END

represented by i. In other words, the integral of the standard normal density function f(z) from z = - toz =

is equal to P(C€<) where

f(z) = exp - (z12) (2.9)

and

f(C,) =P (C<C,) = f(z) dz (2.10)

Thc probability P(C<C,) represents the area under the standard normal curve aw shown in Figure 2.2. For this

* example, the END associated with P(C<C,) = 0.351 is e = -0.381.
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FIgure 2.2. Normal Probability Distribution. Integrated from .ao to i. = -0.381, it yields a
cumulative probability (P) of 0.351.

Using the transnormali7ation process, the probability of a ceiling height less than some threshold corresponds to
a specific END that is based on the empirical CDF of ceiling heights. Since ENDs are distributed N(0,I), they
can be used as variables in the O-U process, where equation 2.8 becomes

P(Cl Co) - (2.1 !)

where ie values are ENDs of the ceiling C.

2.4 An Application of the O-U Process. To understand how these processes work together to estimate a
conditional probability, consider a case in which the initial ceiling height is 2,(XX) feet. In Table 2. 1, P(C<2,(X)O
feet) = .203 and corresponds to an END of e, = -0.833. If we assume a serial correlation of p = 0.95, we can
estimate the probability of a ceiling height less than or equal to a specific value at some time, t, in the future.
For example, suppose we want to know what the probability is that the ceiling 1 hour later is less than 1,(X)
feel In Table 2.1, P(C,<I,O() ft) = 0.113 which yields an END of et = -1.209. Using equation 11, we see that

-(C11C0) 1.209 - (0.95) (-0.833) 1 - .338 (2.12)
(i1 - (0.9.5)2

The value of -1.338 is the END of the probability value of the ceiling being less than I,(XX) feet, given that the
initial ceiling height was 2,000 feet. The END of - 1.338 corresponds to a P(CIC) = 0.090. Therefore, there is a

9.0% chance that the ceiling will fall to less than 1,000 feet within I hour, given that the initial ceiling was
2,(XX feet.

5



TABLE 2.1. Traunormalization from Ceiling to END for Loring AFB, ME, January, 1200 LST.

Ceiling (feet) Cumulative Probability (C<C,) END

0 0.(XX0 0OO
200 ().009 -2.295

1,000 0.113 -1.209
2,(XX) 0.203 -0.833
5,0(X) 0.269 -0.612

10,000 0.351 -0.381
20,(XX) 0.489 -0.032

2.5 Expanding the Conditional Probability Model to Two Variables. The conditional probability model shown
in equation 2.6 can only be applied to a time series of a single variable, such as ceiling. But in meteorology, we
are frequently concerned with threshold values of two interrelated variables, such as ceiling and visibility, and
we are interested in the probability that one or both will be below certain thresholds. With MODCV, wc can
calculate the conditional and unconditional probabilities given joint threshold values of ceiling and visibility.
The probability of these joint conditions is obtained in two steps. First, individual conditional probabilities arc
calculated for the ceiling and visibility thresholds using:

.' - Pc

P(C 1Co) A (2.13)

O P( V I~ o) ' - p' 2°

= - i) 0 (2.14)

where C/V, is ceiling/visibility at time t and CWV oJ is ceiling/visibility at the initial time. The ENDs of the

conditional probabilities (P) are converted back to conditional probabilities of a ceiling or visibility below the
threshold. Next, we subtract this conditional probability from one to obtain the probability of a ceiling or
visibility at or above the threshold, as shown below.

P (C. ICo) = I - P (C, ICo) and P(V,. IVo) = I - P(, IV) (2.15)

where C,/4V represent a ceiling/visibility at or above the threshold. The joint conditional probability of both
ceiling and visibility being at or above their respective thresholds is obtained by:

P (C.O, VOo oV) = 0.P (C., IC,) P (Val lVn) + 0.3MIN I P (C., ICo) ,P (Vg1 IV) I (2.16)

By subtracting the result of Equation 2.16 from one, we now have the probability of a ceiling being below a
threshold, visibility being below a threshold, or both being below a threshold. Equation 2.16 incorporates a
unique application of the independence characteristic associated with the probability of two events. If two
events are completely independent, then the joint probability is simply the probability of the first event
multiplied by the probability of the second. If the events arc completely dependent, however, then the
probability of either event or of a combined event is just the maximum of the two individual probabilities.
Equation 2.16 is a weighted combination of these probability concepts developed by Boehm (1977).

6



Chapter 3

MODCV ASSUMPTIONS AND LIMITATIONS

3.1 Basic Mathematical Assumptions. As with all deterministic or statistical models, simplifying assumptions
must be made. These assumptions impose limits on the model's ability to provide sound guidance. Knowledge
of these limitations is important to using this model as a forecasting tool. MODCV tries to optimize speed and
accuracy while trying to minimize the need to process large amounts of data.

3.2 Modeling Cumulative Distributions with Weibull Curves. A fundamental assumption of this model is that
the Wcibull and Reverse Weibull curves adequately describe the cumulative probability distributions of ceiling
and visibility. A measure of closeness of fit is the root mean square (RMS) difference between the observed
and modeled distributions. RMS differences vary by hour, month, and station, depending on the characteristics
of the observed distribution. However, unconditional probabilities can usually be fit by Wcibull curves with an
RMS difference of 3-6 percent, an accuracy that is usually within tolerance for most users.

3.3 Temporal Spreading of Modeled Cumulative Distributions. MODCV is designed to provide probability
information for any hour of any month. To save computer space and time, modeled cumulative distribution
curves were compiled for 3-hour time periods centered on OOZ, 03Z, 06Z, 09Z, 12Z, 15Z, 18Z, and 21Z. This
was accomplished by including all hourly observations in that 3-hour time period into the empirical distribution.
The assumption is made that the modeled distribution is valid for any hour within the 3-hour time period.

3.4 Inverse Transnormalization. MODCV inputs ENDs of the cumulative probability for ceiling or visibility into
Equation 2.11. Although the O-U process does not require that the random variable y, is normally distributed,
the inverse transnormalization process does. Inverse transnormalization is the process that converts the END of
the conditional probability P(yt lYo) back to an actual probability value P (y, lyo). This process is equivalent to
integrating the normal density function from minus infinity to the END value of the conditional probability.

The inverse transnormalization process will produce consistently accurate probabilities if the END values are
distributed N(0,1). Therefore, MODCV assumes that the END of the conditional probability produced by the
O-U process is distributed N(0,1). This assumption was painstakingly tested by Berecek (1983). Using
Chi-Square tests and tests for skewness, it was shown that the O-U process consistently produces ENDs of
conditional probabilities that are distributed N(0,1).

3.5 Serial Correlation. The O-U process requires a serial correlation (p) as an input to calculate conditional
probabilities. The correlation values used in this model are 0.95 for ceiling and 0.94 for visibility. They
represent the END correlation between hour-to-hour observations of these variables. It should be evident that
hourly correlations of ceiling and visibility will vary depending on climate, station, and season. MODCV
assumes that these values are representative for all locations and that any difference from actual station
• 'relation is negligible.

7
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Chapter 4

MODCV INPUT AND OUTPUT

4.1 Observational Input Limitations. MODCV produces probabilities of ceiling and visibility that are consistent
in time and representative of a given location. The term "consistent" indicates that the serial correlations of
ceiling and visibility are preserved in a way that conforms with patterns actually observed in nature.
Maintaining serial correlations requires that the "past weather" at a given location must be analyzed to obtain
the appropriate probability distributions. USAFETAC has the resources necessary to provide this type of
analysis because its mission includes permanent archival of all weather observations collected by the USAF
automated weather network (AWN). The quality of the observational data collected and archived,
however,varies by location. Stations in western industrialized nations generally follow WMO procedures and
report on a regular schedule. Data from other locations, particularly those in the Third World, do not always
observe WMO standards nor adhere to synoptic schedules. Data coverage in the latter regions is often sparse, as
well. Poor data quality input naturally affects USAFETAC's ability to use MODCV to its full potential for
every location in the world.

4.2 Data Input Requirements consist of modeling coefficients for each location for which probabilities are to be
calculated. There are two sets of coefficients: one for ceiling and one for visibility, as shown in Table 4.1.
Each set consists of 96 pairs of coefficients representing each of the eight time blocks that were discussed in
Paragraph 3.3 for each of the 12 months.

TABLE 4.1. Weibull and Reverse Weibull Function Modeling Coefmicients for
January at Scott AFB, Illinois.

Weibull Reverse Weibuli
Tie(MT)U6C

N1U.072 1.7335.052795 -0.439868
0300 0.068906 1.105603 35.952148 -0.432142
0600 0.060347 1.103759 35.766785 -0.433737
0900 0.064854 1.118966 39.929581 -0.457944
1200 0.083187 1.082496 37.909668 -0.459744
151)0 0. 100389 1.081702 38.308655 -0.468665
1800 0.080195 1.076881 40.062897 -0.465425
2100 0.102712 0.914098 40.241989 -0.465896

4. Modeling Coemcients. A computer tape of weather data for a typical location contains weather observations
for a certain period of record, usually 10 years or more. These data are stratified by month and time of day.
Threshold values are used to define categories of ceilings and visibilities (see Figure 4.1 for Sembach AB, West
Germany). Frequency values associated with these categories are tabulated and used to construct the empirical
CDF. The cumulative probabilities that the ceiling and visibility are less than selected thresholds are calculated
from the historical weather records for each month at the eight 3-hour time periods. The empirical CDF is used
in a linear regression technique to develop a set of coefficients for a mathematical function that fit a theoretical
distribution. This distribution-fitting procedure is a fundamental concept that provides geographical realism for
the model. Diurnal, seasonal, and local variations in visibility and ceiling at each location are represented in the
variability of these modeling coefficients.

8
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Figure 4.1. Observed and Modeled CDFs for Visibility at Sembach A t, January, 23000100Z.

4.4 Derivin CoeTcients for Visibility. USAFETAC's basic modeling equation for the CDF of visibility is
the Weibull curve. Use of the Weibull curve for modeling visibility is well documented by Somerville, Bean,
and Falls (1979); Somerville and ea ( and Whit n and Berecek (1982). The Weibull curve is
expressed by the equation:

P = I - exp ( -aX P) (4.2)

where ot and 9 are the modeling coefficients, X, is some threshold visibility in statute miles, and P is the
probability that an actual visibility observation (X) will be less than X, . In earlier applications of the Weibull

distribution, estimates of Cc and 0 were obtained through an iterative solution of the maximum likelihood
equations. USAFETAC uses a different approach, in which values of the empirical cumulative distribution are
regressed on the Weibull distribution function. Ile calculated coefficients minimize the difference between the
empirical and theoretical cumulative distributions; this is advantageous because the objective is to reproduce
the empirical distribution and not estimate ax and Bi for their own sakes . The technique is as follows:

(1) Let Q - I-P (the probability that X is greater than Xt) and substitute into Equation 4. 1.

Q - exp (-o(X"I) (4.2)

9



(2) Take the natWl logarithm of each side of Equation 4.2.

lnQ - .- X00 (4.3)

(3) Multiply each side of Equation 4.3 by minus one; once again, take the natural logarithm of each side.

In(-InQ) - InCZ + J31nX, (4A)

(4) Estimates of Ot and B are obtained by fitting a straight line to the set of ordered pairs of InX, and In(-lnQ) by

a least squares technique. Using this data and the normal equations for a straight line, the solution for 6 is:

B = n lnXt) (In (-InQ)) - (LIn X,) (£1n (-InQ)) (45)

nZlnX,2 _( lnX,)2 .

and the solution for Oa is

ax= exp (In (-lnQ)) -II, (4.6)

(5) For successful application of this technique, Q must be greater than zero but less than one, since In(-InQ)
will be defined for those values. One problem does result from this technique: although the root mean square
error (RMSE) is minimized in ln(-inQ) space, the RMSE is not necessarily minimized in Q space. A weighting
factor (WF) is necessary to minimize the RMSE; the resulting equations for a and B are:

6 = ZWFL(InX,) (In (-InQ)) (WF) - (7.WFlnX,) (.WFin (-InQ)) (4.7)
(EWFEWF In X,2) - (ZWF I n X,)2

a = xp (ZWFIn(-nQ) )6ZF~X (4.8)

where: WF = (QlnQ) (4.9)

4.5 Deriving Coefficients for Ceiling. USAFETAC uses a slightly different version of the Weibull curve (called
the "Reverse Weibull") to fit ceiling data to a cumulative distribution. The Reverse Weibull curve is given by:

P = exp (-(xXg) (4.10)

where O and 1 are modeling coefficients determined from the empirical distributions, X, is some threshold value

of ceiling in feet, and P is the probability that an actual ceiling observation (X) is less than X,. The technique

used to solve for a and B is similar to that used and shown earlier. A straight line is fit to the ordered pairs of
the data In X, and In(-InP) using the normal equations. Again, a weighting factor (WF) is applied to minimize

the RMSE in P space. The resulting equations for a and B are:

=WF,(lnX,)( ln (-InP))(WF) - (WFInX,) (WFin(-InP)) (4.)
(LWF)(,WFInX,2) - (1WFInX?)

a = exp (EWFn(InP) - IWFlnX1) (4.12)

where: WF = (P/nP) (4.13)
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4.6 An Example of Fitting the Cumulative Distribution Function. The first step in the process of fitting a curve
to a cumulative distribution (CDF) is to select a series of threshold values for the variable of interest--Tablc 4.2
lists a series of such threshold values(X) for visibility.

TABLE 4.2. Empirical and Modeled Cumulative Probabilities that the Visibility
Was Less Than Selected Threshold Values for Sembach AB, January, 2300-01OOZ.

Threshold Visibility Observed Visibility Modeled Visibility
X, P(X :5 x) P(X S x) Residual

0.025 0.(X) 0.(X4 -0.(X4
0.313 0.004 0.0(6 -0.X)2
0.500 0.11 1 0.013 -. (X2
0.625 0.018 0.019 ).(X)1
0.750 0.029 0.025 (.00
1.000 0.040 0.040 00.(X)
1.250 0.061 0.058 0.(03
1.500 0.068 0.078 -0.(M)
2.000 0.086 0.123 -0.037
2,500 0.189 0.174 0.015
3.000 0.235 0.229 0.(X)6
4,(XO 0.339 0.343 -0.(X)4
5.000 0.467 0.458 (.(9
6,000 0.556 0.564 -).(X)8

The next step is to calculate the observed frequency of visibility below that threshold value (P(X<X)) for a

given month and time. Using equations 4.7 and 4.8, coefficients a and B (which fit a specific Weibull curve to
the observed distribution) are calculated. Table 4.2 lists these observed and modeled frequencies for Sembach
AFB, West Germany, for January between 2300 and 0100 GMT. The (t and B values that produce the modeled
frequencies are Ot = 0.041413 and 3 = 1.672692. In this example, the modeled distribution fits the observed
distribution very well. The RMS of the fit was 0.012 and the maximum absolute difference between two curves
at any one threshold value was 0.037. Figure 4.1 (on page 9) shows how the Weibull curve fits the observed
distribution; fitting a curve to the observed frequency of ceilings is done in much the same way. After selecting
threshold ceiling values, the observed distribution is calculated. Then coefficients a and B are calculated with
Equations 4.11 and 4.12. Finally, a specific Reverse Weibull curve is fit to the observed ceiling distribution for
a given month and hour.

4.7 An Example of Calculating Single-Event Unconditional Probability. Table 4.1 (on page 8) contains all a

and B coefficients for the Weibull and Reverse Weibull functions for January at Scott AFB, IL. To compute an
unconditional probability of a single event, we simply enter the value of interest into the appropriate equation
using the X and B values. For example, we may want to determine the unconditional probability of a ceiling
less than 4,000 feet at 0600Z at Scott AFB in January. The Reverse Weibull function is used to model the
ceiling distribution; a and B for 0600Z in January are 35.766785 and -0.433737. Using Equation 4.10 and a
value of X, = 4,000 feet,

P (C<C,) = exp (- X?) (4.10)

P (C<4000 ft) = exp [-35.766787(4000)
"0.4111171

P (C<4000 fi) = 0.375
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we determine that the unconditional probability of a Scott AFB ceiling less than 4,000 feet at 0600Z in January
is 0.375, or 37.5%. The same process is used to calculate unconditional probabilities of visibility, using
Weibull function coefficients and Equation 4.1.

4J An Example of Calculating Joint-Event Unconditional Probability. Paragraph 2.5 discussed the two-step
process required to calculate joint probabilities. In this example, we want to determine the unconditional
probability of ceiling less than 3,000 feet and/or visibility less than 3 miles at 0600Z in January at Scou AFB.
The first step is to calculate the single event probabilities. For ceiling, ( = 35.766785 and i6 -0.433737. Using
Equation 4.10 again, we find that the unconditional probability of ceiling less than 3,(X)0 feet is 0.329.

P (C<c) exp (4.10)

P (C<3000 ft) = exp [-35.766787(3000) -0.4137 171

P (C<3000 ft) = 0.329

For visibility, a = 0.060347 and 8 = 1.103759. Using Equation 4.10 once more, we find that the unconditional
probability of visibility less than 3 miles is 0.184.

P(V<V,) = -- exp(_04 (4.1)

P (V<3 miles) = 1-exp [-O.60347(3)' 037 59i

P (V <3 miles) = 0.184

The probabilities above the threshold, therefore, are 0.671 for ceiling and 0.816 for visibility. The joint
probability of these two single evenms is calculated by using Equation 2.16 and the unconditional probabilities
above the thresholds. The joint probability of ceiling less than 3,000 feet and/or visibility less than 3 miles
1P(C<3000 ft and/or V< 3 miles)] is 0.416 or 41.6%.

P (C3000 ft, V_3 miles) =03P(C>3000ft)P(V>3 miles) + 0.3MIN 1P (C_>3000 ft), P (V23 miles)1 (2.16)

P (C3000 ft, V>3 miles) = 0.7(0.671) (0.816) + 0.3(0.617) = 0.584

P (C<3000 ft and/or 3 miles) = 1 - 0.584 = 0.416

4.9 An Example of Calculating Single-Event Conditional Probability. To estimate the conditional probability
of an event, we need the initial condition and the threshold condition at time i. For example, say that the Scott
AFB ceiling is 3,000 feet in January at 0600Z, and that we want to know the conditional probability of a ceiling
less than 2,000 feet at 1200Z. The first step is to calculate the unconditional probabilities associated with the
initial condition and the threshold value at time t. The unconditional probability of a ceiling less than 3,000 feet
at 0600 GMT was calculated in the preceding paragraph as 0.329. The unconditional probability of a ceiling
less than 2,000 feet at 1200Z is then calculated to be 0.316, as shown below:

P (C<2000 ft) = exp [-37.909668(2000)0"'459744]

P(C<2000 ft) = 0.316

The second step is to transnormalize the probabilities of these events (using the transnormalii.ation process
discussed in paragraph 2.3) to convert the probability to an END. We do this by using Equation 4.12, in which
P is the unconditional probability and p is its END.

12



p=4.91[p'1 4 - (l-p)O.14] (4.14)

(C<3000 ft) = 4.91[0.3290"14 - (1-0.329)0' 141

P(C<3000 ft) = -0.441

The END of the probability of a ceiling less than or equal to 3,(XX) feet at 06(XZ, therefore, is -0.44 1. Using the
same process, the END of the probability of a ceiling less than 2,000 feet at 1200Z would be -0.477.

The third step uses the END values and the Ornstein-Uhlenbeck equation (Equation 2.6), where

Pryo) = -0.441 and p(y) = -. 477.

This process yields the END of the conditional probability (j(y, lyo)), where t = 6 hours, and p=po' where p0o
0.95. The value of the conditional probability of y6 = 2,000 feet, given y(, = 3,000 feet, is -0.489.

p(y6 =2000 fyo = 3000ft) =(-0.477)-(0.95)6 (-0.441) = -4).489I Y6= 200 ftyo =3000ft) .l1(0.95)2

The final step is to convert the END of the conditional probability to an actual probability value. This process,
known as "inverse transnormalization," can be accomplished mathematically using Equation 4.15.

P I -(4.15)

P I + exp [-p(0.07p2 + 1.6)1 (

Inserting the END of the conditional probability into Equation 4.13 yields P = 0.312. In other words, given an
initial 3,000 foot ceiling at 0600Z, we would expect the 1200Z ceiling to be below 2,0(X) feet 31.2% of the time.

4.10 An Example of Calculating Joint-Event Conditional Probability. Single-event conditional probabilities of
both ceiling and visibility are necessary to compute the joint conditional probability. Each single-cvcnt
conditional probability is computed using the procedure outlined in the previous section. Those single-event
conditional probabilities are converted to probabilities above the threshold, then used as input to Equation 2.16
to estimate joint conditional probability. Subtracting this value from I gives the probability of ceiling,
visibility, or both being below the threshold.

To explain further, let's use some information from the previous example. The (,00Z ceiling and visibility are
3,000 feet and 3 miles. Suppose we want to find the joint conditional probability of a 2,000-foot ceiling and/or
a 2-mile visibility at 1200Z. We already know that the conditional probability of a 2,000-foot ceiling at 12(X)Z,
given that the 0600Z ceiling was 3,000 feet, is 0.312 or 31.2%. Using the Weibull function and setting p0 =
0.94, we find that the conditional probability of a 2-mile visibility at 120(Z, given a 060(2 visibility of 3 miles,
is 0..50 or 15%. Again, we convert the probabilities to above the threshold, or 0.688 for ceiling and 0.850 for
visibility.

Next, we enter these conditional probabilities into Equation 2.16, as shown, to calculate the joint conditional
probability. We find the conditional probability of a 2,)0-foot ceiling and/or 2-mile visibility at 1200Z to be
0.385 or 38.5%.

P (C22000 ft, V, 2 mileslC>3000 fl, V>3 miles) = 0.3P (CA, Co) P (VA I Wo) + 0.3MIN IP (CA, ICo), P (VA, IWo) I

= 0.7(0.688)(0.850) + .3(0.688) = 0.615 (2-16)

(C<2000ft and/or V<2 miles) = I - 0.615 = 0.385
13



. 4.11 Model Output. Complete examples of MODCV output are provided in Tables 4.3 through 4.6. Ceiling and
visibility categories are specified by the user and are primed along the left margin. Times printed along the top
designate each time step. Probabilities at each time step will total approximately 100% (±2%) due to rounding
enors. Unconditional probabilities represent climatological averages; conditional probabilities modify them
according to the current condition.

4.11.1 Uncondiional Visibility Probability. Table 4.3 gives unconditional visibility probabilities for Ramstcin AB,
West Germany, during January. The first category is for visibility below 4(X) meters; probabilities vary from
1-3% throughout the 24-hour time period. The second and succeeding categories represent the interval greater
than or equal to 400 meters but less than 800 meters, and so on. The last category represents the interval from
greater or equal to 8,000 meters to positive infinity. Categories are cumulative; therefore, there is a 22%
probability of a visibility less than 3,200 meters at 07Z. Unconditional probabilities change only when
coefficients change to match the proper 3-hour time periods. Note the same probabilities for 06-08Z, 09-1 IZ,
etc. Interestingly, the climatology for 15 and 18Z are similar even though the coefficients are slightly different.

TABLE 4.3. Modeled Visibility Unconditional Climatology, Ramstein A, ,January, 0600Z.

Cat Top Meters 07Z 08Z 09Z 10Z IIZ 12Z 15Z I1Z OOZ 06Z
400 2 2 3 3 3 1 1 1 2 2
800 3 3 3 3 3 2 2 2 2 3

12(X 3 3 3 3 3 2 2 2 2 3
16(X) 3 3 3 3 3 3 2 2 2 3
3200 11 !1 13 13 13 11 10 10 10 II
48(X) 10 10 12 12 12 1i 10 10 9 10
8000 18 18 20 20 20 21 19 19 16 18
99999 51 51 43 43 43 49 53 53 55 51

4.11.2 Unconditional Joint Probability. Table 4.4 gives joint unconditional probabilities of ceiling and visibility
for McChord AFB, WA, during January. The ceiling and visibility categories are combined (see Paragraphs 2.5
and 4.10) to produce a weighted probability. This table will produce different probabilities than individual
ceiling and visibility tables. Once again, note the change of probability with the change of coefficients at
13-14Z and 15-17Z.

TABLE 4.4. Modeled Ceiling/Visibility Unconditional Climatology, Mcchiwd AFB,
January, 1200Z.

Cat Top Feet/Mi 13Z 14Z ISZ 16Z 17Z l8Z 21Z OOZ

2M7.25 7 7 6 6 6 5 3 3
5(X)/.5 7 7 7 7 7 7 4 4

1000/1 ! 11 12 12 12 12 11 10
15(X)/i.5 9 9 9 9 9 10 I0 I0
20(X)/2 7 7 7 7 7 8 9 8
2500/3 7 7 7 7 7 7 8 9
3000/7 il 11 13 13 13 14 15 18
9999/9999 42 42 39 39 39 36 40 38

4.11-1 Conditional Ceiling Probability. Table 4.5 shows conditional ceiling probabilities for Ramstein AB during
January at 060(Z, given a ceiling of 9(X) feet. Again, note that the categories are cumulative. The function can
be broken into many segments, but they still add up to the whole. For example, at 12Z there is a 35%
probability that the ceiling will stay below 1,000 feet. The probability of a ceiling below 3,000 feet but greater
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or equal to 1,000 feet is 52%. If the first category were 3,000 feet, the probability would be 87%, ± 1% for
rounding. Use of conditional probability by a forecaster is subjective. A commonly used technique is to key on
the largest probability above or below a certain threshold, then modify it with other data. For example, recent
frontal passages or yesterday's timing for improving conditions should be considered. Caution should be
exercised depending on how the categories were set up.

TABLE 4.5. Modeled Conditional Climatology, Ceiling 900 feet, Ramstein AD,
January, 0600Z.

Cat Toe Feet 07Z 08Z 09Z 10Z IIZ 12Z 15Z IZ
0U 0 0 0 o 0 IT" or

500 1 4 5 6 7 4 3 5
1000 59 50 43 40 37 31 23 22
1500 34 30 29 26 25 25 21 18
2000 6 10 12 13 13 14 14 12

2500 1 3 5 6 7 8 9 9
3000 0 1 3 3 4 5 6 6
99999 0 1 3 6 8 12 22 27

4.11.4 Conditional Joint Probability. Table 4.6 shows joint conditional probabilities of January ceiling and
visibility for McChord AFB at 1200Z. If you compare Table 4.6 with Table 4.4, you'll see how much of a
difference the current condition can make. The third category (1,000/1) changes the most at 13Z, increasing
from 11% to 46%. Of course, both current conditions fall into this category. If either current condition were in
a higher or lower category, the probabilities would change accordingly. The joint table probabilities will be
different than the ceiling or visibility conditional tables alone. The joint probabilities will usually be higher in
the lower categories since two conditions are used. Another tendency of MODCV's conditional probabilities is
to favor the current condition category. In Table 4.5, the third category (1,0(X) feet) continues to show a high
probability (22%) at 18Z. Similarly, in Table 4.6, the category that contained the current condition has the
highest probability (18%) at OOZ. Using the highest probabilities is a good first guess, but remember that
categories are cumulative--interpret them with respect to the initial conditions.

TABLE 4.6. Modeled Ceiling/Visibility Conditional Climatology, Ceiling 800 Ft/
Visibility .75 Mile, McChord AFB, January, 1200Z

Cat Top Ft/Mi 13Z 14Z 15Z 16Z 17Z 18Z 21Z 00Z
200/.25 9 13 15 15 16 13 7 6
500/.5 22 21 20 19 18 17 10 8

1000/1 46 36 31 28 26 27 23 18
1500/1.5 17 17 17 16 15 16 18 16
2000/2 4 7 8 8 8 9 12 !1
2500/3 1 3 4 5 6 6 9 10
3000/7 0 2 3 5 6 7 10 15
9999/9999 0 1 2 4 5 6 13 15
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* Chapter 5

MODEL VERIFICATION

5.1 General. Eleven stations, selected to allow for verificaton under different climatological regimes, were used to
test MODCV's capabilities; they are:

RAF Mildenhall, UK Shaw AFB, SC Ramstein AB, West Germany McChord AFB, WA
Osan AB, Korea Clark AB, RP Shcmya AFB, AK Eglin AFB, FL
Minot AFB, ND Lajes AB, Azores Cannon AFB, NM

MODCV was tested against wind stratified conditional climatology (WSCC). The Brier skill (P) score, which
will be discussed in Paragraph 5.2, was used to compare the probability forecasts. The paired t-test (to be
discussed in Paragraph 5.3) determined the statistical significance of P-score differences between MODCV and
WSCC.

5.2 Brier Skill (P) Score. The P-score takes the form of:

P = r ' )1 ](5.1)L 1 

Where r is the number of forecast categories, N is the number of daysf is the probability forecast of the event
occurring in that category, and E takes the value of one or zero according to whether the ceiling or visibility
occurs in that category. P ranges from 0 (perfect) to 2 (worst). For this test, we used six categories derived
from WSCC tables, as shown in Table 5. 1.

TABLE 5.1. Brier P-Score Input and Output for RAF Mildenhall.

MODCV Verified MODCV Verified
Forecast ((r Cate[,rz (E)U A 00 19f)0 A (0- 1991
0 0 B (200-499 ft) 0 0 B (2(K)-499 ft)
.02 0 C (5(X)-999 ft) 0 0 C (5(X)-999 f)
.37 0 D (1,000-2,999 ft) .01 0 D (l,0(X)-2,999 ft)
.49 0 E (3,000-9,999 ft) .21 0 E (3,000-9,999 ft)
.12 1 F ( I0,(00 ft) .78 1 F (>l0,(XX) ft)

----.. --- ........- 2.----------------------...... ---2S ............................................................. 25
0 0 A (0-199 ft)
0 0 B (200-499 ft)
.01 0 C (500-999 ft)
.32 1 D (1,000-2,999 ft)
.52 0 E (3,(X)-9,999 ft)
.15 0 F (t10,00 ft) 0 0 A (0-199ft)

------------...----.--.--.---.-..-...... ------------- 27 0 0 B (2(K)-499 ft)
0 0 A (0-199 ft) 0 0 C (50)-999 It)
0 0 B (2(K)-499 ft) .02 0 D (1,0(X0-2,999 ft)
0 1 C (500-999 ft) .26 0 E (3,0(X)-9,999 it)

.11 0 D (1,(00-2,999 ft) .72 1 F (!1),X) ft)

.49 0 E (3,(X)0-9,999 ft) ............ ............................................... I

.39 0 F ( 10,KXX ft)
... .....................................------ 26 P = .6852106
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Verification data was collected during the month of February 1987. Because of the sheer bulk of the data that
had to be entered manually, only two forecasts (for 3 and 24 hours) were verified. As an example, Table 5.1
shows Mildenhall's MODCV ceiling probabilities (f) for the six categories and the category observed (E) at the
3-hour point for the Mildenhall afternoon forecast. A skill score of .685 is calculated for the 28 days in
February. Skill scores for WSCC and MODCV were computed at all 11 stations and for both verfication times.
Table 5.2 shows the skill score for WSCC ceiling (WC) and visibility (WV), and for MODCV ceiling (MC) and
visibility (MV). As you can see, Mildenhall's afternoon ceiling 3-hour verification (MC = .69) wasn't as good
as WSCC's (WC = .64). But Osan's morning MODCV visibility verified at 24 hours (MV = .28) is better than
WSCC's visibility (WV = .42). Clark's data could be misleading, but almost all forecasts were verified
correctly in category F. The P-scores show a wide range of results.

TABLE 5.2. Forecast Verification Results (P-Scores) for 11 Stations.

Mornig Afternoon
3 hours 4 hours 24 hours

WC MC WV MV WC MC WV MV WC MC WV MV WC MC WV MV
RAMSTEIN .62 .52 .66 .63 .83 .76 .82 .84 .50 .53 . .47 .77 .72 .79 .72
MILDENHALL .53 .60 .26 A5 IA7 .78 .6) .61 .64 .69 .38 .37 .72 .75 .43 .48
CANNON .22 Al .29 .29 .42 .55 .38 .43 .25 .38 .12 .12 .21 .48 .25 .26
LAJES .18 .23 .07 .07 .26 .34 .0 .00 .26 .49 .00 .14 .47 .45 .14 .14
OSAN .01 .11 .27 .30 .08 .09 .42 .28 .16 .09 .51 .64 .28 .27 .47 .50
MCCHORD .30 .32 .21 .17 .35 .39 .18 .21 .09 .11 .00 .05 .11 .18 .01 .02
SHEMYA .40 .42 .26 .27 .69 .66 .47 .46 .52 .51 .35 .33 .56 .62 .55 .48
EGLIN .21 .31 .20 .27 .51 .45 .29 .27 .30 .23 .25 .18 .49 .53 .33 .32
SHAW .27 .24 .26 .21 .66 .42 .25 .26 .30 .34 .31 .33 .66 .36 .22 .20
MINOT .53 .62 .33 A2 .68 .67 .20 .21 .51 .46 .11 .14 .69 .64 .34 .29
CLARK .00 .0 .01 .00 .01 .00 .0 ) .00 .0X) .11 .0 .00 .,.00 .0 0X

5.3 Paired T-test. The paired t-test was used to determine if differences between MODCV and WSCC P-scores
were statistically significant. The mean differences (3) between MODCV and WSCC P scores were calculated
from Table 5.2. The following steps were performed:

a. Null Hypothesis: (H0) : Ad -- -PtMODCV -tWSCC =0 (No difference)

b. Alternate: (H,) : 4td * 0 (Some difference)

c. Test Statistic: It I= -- 0, where d and sd are the mean and standard deviation of the n differences.c. Tet Staistic IT n

d. Rejection Region: With 87 degrees of freedom, we reject Ho if ItI>t.0,r2. Therefore, P (It -> c) = a, which is

equal to the probability of rejecting Ho when it is indeed true.

e. Conclusion: For this analysis, 04f2 = 0.025 gives a critical value c = 1.99. It follows, then, that to reject the
null hypothesis (H.) of no difference, our calculated Id must be > 1.99. Substituting the appropriate vwlucs into

our test statistic we find:
-2.70 . 10 3 - 0 = 0.226

It = 0.1 12/7(88)
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* At the 0.05 significance level, Ili - 0.226 is not greater than or equal to 1.99. We therefore failed to reject the
null hypothesis and conclude that there is no statistical significant difference between the P-scores for the
WSCC forecasts and the P-scores for the MODCV forecasts. MODCV shows good skill when compared to
WSCC tables. Although these results. are based on the verification of only I I stations for the month of February
1987, the results are similar to those found in a test conducted by AFGWC (Globokar, 1978). Modeling,
therefore, offers a viable alternative for representing clinatologies or ceiling and visibility.
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* Chapter 6

SUMMARY AND CONCLUSIONS

MODCV was created to make available climatology easier to use. This uscr-Iricndly program provides an
entire year's ceiling and visiblity probabilities for various stations at the touch of a button. It replaces the
considerable bulk of :he WSCC and RUSSWO, as well. Climatology for dozens of stations can now be simply
and casily maintained for planning, mobility, and similar applications.

This electronic convenience, however, is not without the expense of some accuracy. Modeling of CDFs with
the Weibull curves, for example, introduces a 3-6% error. But compared to the benefits, this error is minimal.
Modeling also produces a continuous curve that can account for extremes that haven't occurred and for
thresholds that aren't commonly recorded (3,300-foot ceilings, for example).

Unconditional climatological probabilities can be calculated as the area under the curve for that station and time
period. Conditional probabilities can then be computed using the Ornstein-Uhlenbeck equation, a first-order
Markov process. The Markov process gives a future value of a given weather variable using its current state and
a serial correlation. The methodology in MODCV requires that the weather variables be converted to an
equivalent normal form. This is accomplished through transnormalization, which simplifies the mathematics.
The algorithms then produce unconditional and conditional climatological probabilities from the same
database.

Although theory indicated that the program described in this report was valid, the output needed verification. A
I-month study (documented here) was conducted to compare MODCV to the acceptable WSCC. Brier scores
were shown to be statistically the same, indicating that MODCV is practical for operational use.

0
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